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Variation of Relative Temperature at the Surface and at the Center of a Plate 

(Sk = o . s ;  l l l  = i .o; Oo = 0.2) 
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it is more acceptable for the case of relatively large Sk and Bi that 
the inverse phenomenon will occur. This is due to the fact that then 

Bi* (Fo) -.< Bi; (Fo) .~< Bi~. 

The method described may be used for bodies of different geo- 
metrical configuration (cylinders, spheres, prisms, etc. ), and also 
for other nonlinear boundary conditions. 

NOTATION 

@(X, Fo) = T(X,Fo)/T m is the relative temperature; T m is the t em-  
perature of the medium; T o is the initial temperature; (5 is the plate 
half width; cc is the heat transfer coefficient; o v is the view factor for 

radiative heat transfer; a is diffusivity; r is time; | = T0/Tm; Fo = 
= at~62; Bi = a6A; sk = OvT~m6/K. 
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In the solution of this problem it is usually assumed that heat con- 
duction in the direction of flow is negligibly small  in comparison 
with convective heat transfer. When this assumption is made and when 
thermophysical characteristics are assumed to be constant and the veloc- 
ity profile across the tube to be parabolic (which corresponds to steady 
rectilinear symmetr ic  isothermic laminar  flow), the first boundary- 
value problem can be formulated as follows: 

a,t 1 at at 
-o-d ;+  n o ~  - ( I - R~) ~ , 

0 ~< R . < I ,  0 ~ z <  +oo ,  (1) 

t (0, z)  < + co, (2) 

t (1, z)  = / (z), (3) 

t (~, 0) = cp (R). (4) 

To solve this problem we first solve the corresponding homogeneous 
problem, v iz . ,  Eq. (1) on condition that on the surface of the tube 

t ( ! ,  z)=0. ( 5 )  

We will seek special solutions of this auxiliary problem in the form of 
products M(R)exp (-p2Z) on condition that M(R)is the solution of the 
following Sturm-Liouville problem [1]: 

d~M 1 dM 

M ( 0 ) < - + - c o ,  M ( 1 ) = 0 .  (6) 

Direct substitution shows that the solution of problem (6) will be 

a function 

T ( I X R 2 ) = F ( a ,  I, I xR~)exp ( - - -~  - ' R 2 ) ,  (7) 

where F(a,I ,pR z) is a degenerate hypergeometric function, and a = 

= (2 - ;)14. 
Expressing the exponential and hypergeometric function in the 

form of power series in R 2 [2-4] and multiplying these series, which 
is possibIe in view of their absolute convergence, we obtain 

T (Ix R ~) = 1 + X 

k 

x /?~k E (-1F§ 2 ~ r ( a + s )  
]: (a) (sip O--s)l " (8) 

s=0 

TO obtain nontrivial solutions we must find the eigenvalues of/~ 

from the equation 
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which can be solved graphically. 
The corresponding eigenfunctions in the interval [0, 1] T(gR 2) will 

be orthogonal with a weight R(1 -- R z) [5], i. e , ,  the following equality 
wii1 be va l id :  

1 

y R ( 1 - -  R ~) T (itn R t) T ([Xm R 2) dR = 
0 

= dF(a . ,  1, P.n) s, , 
d/~ exp -- n = m. (I0) 

Following Grinberg's method [6], we will seek the solution of 
problem (1) with boundary conditions (2), (8), (4) in the form 

where 

Z t~ (Z) T (iti ks), 
t =  dF(at,  1 Itl) exp -- 

�9 i = 0  dR 

(11) 

,1 

j' t(R, Z)R(I--R2)T(It~RDgR. tt(Z) 
0 

Substituting (11) in (1) and using the boundary conditions we ob- 
tain the following ordinary linear deferential equation of the first 
order to determine ti(Z): 

a--z-art + Its2 tz (z) + k~f, (z) = o. (12) 

where 

k i=2i t i  dF(at,  1, ~t) e x p ( - - - - ~ )  
dR 

the solution of which will be 

t i  = exp ( - -  F~ Z) [Ci - -  k~ f ~ (Z) exp (it~ Z) dZ]. (18) 

The constant C i is determined from the boundary condition (4) 

by multiplying this condition by the eigenfunction and integrating 
over the interval [0,i]. For this we need to know the forms of func- 

I N Z H E N E R N O - F I Z I C  H E S K I I  Z H U R N A L  

t iom f(Z) and 9~(R) and for the latter, as a rule, we need to assume 
that it can be expanded as a power series. In particular, when e(R) =- 
---0, f(Z) m f0 =cOnst 

c~=k~ -~. 

We denote the found values of Ci by C~, and then the solution of 
our problem will take the form (11), where t i is given by formula 

0 (18) with C i = C i. 
The problem is solved in exactly the same way with a boundary 

condition of the second kind, i . e . ,  if condition (8) of our problem 
is replaced by the condition 

at  (1, Z) 
OR = f ( z ) '  (14) 

In this case the eigeuvalues will be given by the following system: 

2aF(a+1, 2. t t ) = F ( a ,  1, It), 

a = (2 "it)/4 (15) 

NOTATION 

R -~ r/r  o is the dimensionless variable radius; Z --= z/r0Pe is the 
reduced tube length; Pc = 2Wavr0/a is the Peclet number; r0 is the tube 
radius; r and z are cylindrical coordinates; Wav is the average flow 
velocity; r (a)  is the gamma function; t is the temperature of the liquid. 
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In the thermal potentiometer method of measurement of thermal 
conductivity of metals (Fig. 1) [1], the total heater power may be 
represented in the form 

I[= llel + W~, 

where W l is the power passing through the cross section of the speci- 
men TI; and W 2 is the power scattered by radiation from the specimen 
surface Sp !ocated below the section T 1. 

Similarly 

WI=WS+W,, 

where W4 is the power passing through the specimen cross section T2; 
and W s is the power scattered by radiation from the specimen surface 
located between sections T 1 and T 2. 

For T 1 - TO m 1 ~ Ws is not less than lqo of W, right up to 100- 
150 ~ K. W4 is a quantity of the second order of smallness in compari- 


